Robustness to Adversarial Attacks & Scaling Law

Presented by: Rodwell Nicolas Bent Tom Marty Rafael Hernandez Siddhika Arunachalam

How does scale impact adversarial robustness?

What is scale ?

Language models represented by the size of parameters (figure adopted from DistilBERT from huggingface)

How does scale impact models?

Original

Perfect performance by the movie legend: Positive (99%)

Adversarial

Spotless performance by the movie legend: **Negative** (74%)

Great performance by the movie legend

Adversarial training

Adversarial attack as a form of data augmentation :

• Proportion of adversarial samples seen during training

PSOZang : Word-level Textual Adversarial Attacking as Combinatorial Optimization :

PSOZang : Word-level Textual Adversarial Attacking as Combinatorial Optimization :

PSOZang : Word-level Textual Adversarial Attacking as Combinatorial Optimization :

PSOZang : Word-level Textual Adversarial Attacking as Combinatorial Optimization :

Idea : Word-level attack seen as a Combinatorial Optimization problem – Particle Swarm

BAEGarg: BERT-based Adversarial Examples for Text Classification :

Idea : use BERT model to predict MASKED token

BAEGarg: BERT-based Adversarial Examples for Text Classification :

Idea : use BERT model to predict MASKED token

BAEGarg: BERT-based Adversarial Examples for Text Classification :

Idea : use BERT model to predict MASKED token

How does scale impact adversarial robustness?

How does scale impact models?

Can we empirically verify that :

$$\log(L) \approx a(p,d) \times \log(n) + b(p,d)$$

Where :

- n = model size
- p = number of adversarial samples seen during training
- d = dataset size
- L = adversarial loss

Adversarial Dataset

5k successfully attacked texts from all models

- The film is darkly **funny** in its observation of just how much more grueling and time-consuming the illusion of work is than actual work.
- The film is darkly **bizarro** in its observation of just how much more grueling and time-consuming the illusion of work is than actual work.

Dataset for sentiment categorization

text (string)	label (class label)
the rock is destined to be the 21st century's new " conan " and that he's going to make a splash even greater than arnold schwarzenegger , jean	1 (pos)
the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co	1 (pos)
effective but too-tepid biopic	1 (pos)
if you sometimes like to go to the movies to have fun , wasabi is a good place to start .	1 (pos)
emerges as something rare , an issue movie that's so honest and keenly observed that it doesn't feel like one .	1 (pos)

• Rotten tomatoes : 10662 entries. (50% +, 50% -) : film commentary and review.

• IMDB : 50000 entries : film commentary and review.

• Amazon polarity : 2000000 entries : Comments on several products sold by amazon.

Eleuther AI GPT

- Neo 125M/1.3B/2.7B
- J 6B
- 825 GiB training set (The Pile)

Training and Evaluation methods

• Idea : Evaluate loss / prediction performance for different models trained with increasing size of adversarial samples seen during training.

Density of ball

Density of ball

Limitations

- Positive (99%) --> Negative (82%)
- yeah , these flicks are just that damn good . isn't it great ?
- yeah , these flicks are just that damn bad . isn't it great ?

Conclusion

- •Scale improves adversarial robustness
- Preliminary results
- More datasets, more models!

Thank You ! Questions ?

TextAttack

A simple framework for adversarial attacks :

https://arxiv.org/abs/2005.05909

PSOZang : Word-level Textual Adversarial Attacking as Combinatorial Optimization :

Idea : Word-level attack seen as a Combinatorial Optimization problem

- Word substitution method based on sememes (unit of semantic meaning) : define the search space.
- Produces *likely* output
 (without context-awareness)

•Particle swarm optimization-based search algorithm

BAEGarg: BERT-based Adversarial Examples for Text Classification :

Idea : use BERT model to predict MASKED token

• Rule-based synonym replacement strategy

• Produces *likely* output (with context-awareness)

• Produces output with improved grammaticality and semantic coherence

Adversarial Robustness

