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ABSTRACT

In this paper, we aim to show, regarding deep learning models, that there exists a
relationship between the loss and the number of parameters. Ultimately, uncovering
the emergence of power laws and testing the robustness of language model with
scale. We evaluate the performance of various GPT models such as GPT-Neo 125M,
GPT-Neo 1.3B, GPT-Neo 2.7B, GPT-J 6B against adversarial attacks. Current
literature on adversarial attacks do not generally quantify how vulnerable these
models are to attacks. The two adversarial attacks namely BAE (BERT-based
Adversarial Examples) and TextFooler are conisidered as a means for Text Classifi-
cation. Therefore, this piqued our interest and suggested we should dive deeper
into the subject. We will train these GPT models on the RottenTomatoes dataset to
evaluate the effects of scale on adversarial robustness.

1 Introduction

Recently, it has been established that the loss of neural networks follow power laws which scale
with the size of the data or network [7]. This has been demonstrated for natural language processing
models [9], including neural translation [6]. The exponents of the power law controls the speed of
the improvement with regard to different parameters. Neural language laws also shows that large
models are sample efficient and that with a fixed compute budget it is better to train a large model
and stop before it has fully converged [9]. Improvement in loss is not the only way to observe model
performance, and there has been a significant body of work on the robustness of neural models to
adversarial attacks [17]. There have been various ways to quantify robustness [2, 19, 10]. It has also
been shown that different networks trained on the same data set have fallen victim to the same type
of adversarial examples [15]. This leads to the question does robustness follow scaling laws.

We aim to examine this by using trained large scale language models present in the hugging face
library trained by Eleuther AI [1]. The GPT-Neo and GPT-J models offer a way to measure the
robustness of models that have different numbers of parameters, from 125M-6B. Most of the measures
of robustness correspond to measures of accuracy, so they are not a good way to judge neural scaling
laws, instead we will build an adversarial dataset. Once the dataset has been created, we can measure
the overall loss of each model and verify if the robustness of language models follow scaling laws.
This could also be looked at as a special case of the effect of model size on worst group generalization,
where the worst group is an adversarial group [14].



2 Motivation

Massive natural language models have become common place in the modern machine learning
landscape. At the same time, the robustness of models to adverserial examples has also become an
important area of research. It is therefore important to examine how scale impacts robustness and
whether all of these larger models are able to improve their robustness.

3 Related Work

3.1 Adversarial Robustness

A Voronoi-epsilon adversary is proposed in [10] which the two notions of perturbation helps to
manage the adversary. Because of this, a trade-off is not produced between accuracy and adversarial
accuracy, even when ϵ is large due to adversarial accuracy based on this adversary.

A gradient-guided search over tokens that finds trigger sequences which are short is proposed in [15].
Also, the triggers that are optimized for specific models can be used for the other models and all the
tasks considered.

An adversarial training process named as Attacking to Training (A2T) is introduced in [?]. Datasets
such as Rotten Tomatoes, IMDB, Yelp and SNLI are used for training purposes which uses models
like BERT and RoBERTa. The authors also proved that the accuracy, cross-domain generalization
and interpretability can be improved in NLP models.

3.2 Scale Laws

There has been a lot of research on creating adversarial examples and hardening adversarial, but
it lacks research in the area of performance measures for evaluating adversarial robustness. By
taking inspiration from this, the study in [2] introduces residual error for evaluating the adversarial
robustness at each sample of a deep neural network and also works to differentiate between the
examples of adversarial and non-adversarial. The authors concluded that the proposed concept was
critical in the design of robust models that are adversarial.

In terms of cross-entropy loss, a certain scaling law is observed as a function of model size in [6].
A formula is presented which describes the scaling behavior of cross-entropy loss. The differences
between the encoder and decoder scaling shows different power law exponents when observed. Also,
the connection between the cross-entropy loss and quality of the translations that are generated are
studied.

The training sets growth leads to the growth of generalization error and model size. The methodology
is experimented on four different Machine Learning experiments such as machine translation, image
processing, speech Recognition and language modeling. The authors in paper [7] confirms that the
accuracy of the Deep Learning model as a power law improves as it grows. In addition, changes to
the model architecture and optimizer within each domain only shift the learning curve. However, it
does not affect the power law index.

Empirical scaling laws for language model performance on the cross-entropy loss is investigated in
[9]. Loss is scaled as a power law depending on model size, dataset size, and compute power used for
training. Also, an interesting point which the authors figured is that the dependence of overfitting on
the dataset size and the dependence of training speed on the model size can be controlled with the
help of simple equations. Another important finding is that the sample efficiency in larger models are
significantly more, such that the compute-efficient training comprises training very large models on
relatively small amount of data.

The effect of model size on worst-group generalization under empirical risk minimization (ERM) is
tested in various settings with respect to architectures, domain and model sizes. It was also studied in
[14] that by increasing the model size of pre-trained models consistently, the performance on datasets
like MultiNLI and Waterbirds also improved.
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4 Methodology and Datasets

Our aim is to study the impact of adding adversarially generated samples to the training for models
of different sizes. Specifically, we expect to find a log-linear empirical scaling law [9] between the
size of the language models and the loss on the evaluation set for text classification task. We used the
TextAttack library [12] to automate the training process with or without adversarial data. This library
allows to use very easily models and datasets from big machine learning libraries such as Hugging
face and also contains many adversarial attacks called recipe already implemented.

We have chosen to use the following language models gently provided by Eleuther AI : GPT-Neo
125M [3], GPT-Neo 1.3B [3], GPT-Neo 2.7B [3], GPT-J 6B [16], which have the particularity of
having been pre-trained on the same dataset The Pile [4](825 gb), which is a necessary property to
guarantee the relevance of the comparison.

The size of the models ranges from 125 million parameters to 6 billion parameters, allowing us to
study the impact of the model scale on more than one order of magnitude. Our largest models are
comparable in size to current state-of-the-art models.

These large models are capable of encoding high-level concepts and have a fairly good idea of the
overall syntactic and semantic coherence of a text. Therefore, we decided to limit our study to
word-level adversarial attacks, which act by changing/adding one or more words to the sequence.
These methods generally produce sentences that are plausible and semantically close to the original
sentence. The generated sentences are more difficult to detect by conventional language models,
which is what we are looking for in order to efficiently benchmark our models.

We have limited ourselves to 2 different close to the state-of-the-art adversarial attacks:

- BAE, BERT-based Adversarial Examples for Text Classification [5]: which is a conventional BERT
language model, it replaces and inserts tokens in the original text by masking a portion of the text and
leveraging the BERT model to generate alternatives for the masked tokens.

- TextFooler [8]: it assigns an importance score to the different words in a sentence, and replaces the
most important words from a vocabulary generated in such a way as to maintain semantic similarity.

As mentioned earlier, we were interested in the task of text sentiment classification. To do so, we
trained and evaluated our models on the RottenTomatoes [13] dataset available on Hugging Face,
which contains 5,331 positive and 5,331 negative processed sentences from Rotten Tomatoes movie
reviews. We could also have AmazonPolarities and IMDB [11] datasets to validate our results
obtained on the first dataset. We decided to focus on a single dataset to be able to train more models
given our limited computing power.

Figure 1: Samples from the RottenTomatoes dataset and their associated label/sentiment

The different models are trained on the augmented-RottenTomatoes dataset with increasing added
adversarial samples (No samples / 10 / 100 / 1000 / 5000) on 3 full epochs with a learning rate of
5e-5.

After every epochs, all models are evaluated on a fixed dataset containing 1250 adversarial samples,
625 generated using each attack method (Textfooler and BAE). The metric being used for the
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empirical scaling law is the evaluation loss on this dataset for each models. The entire pipeline is
recapitulated in Fig. 2.

Figure 2: Summary of the whole learning and evaluation pipeline.

Although the loss is the metric commonly used for model comparison, in a context of sentiment
classification we also consider the attack success rate (proportion of samples classified by the agent
out of all adversarial samples) to ensure that a decreasing loss is associated an increasing classification
performance.

Finally, we were interested in the L2-distance between the sentence embeddings computed by the
transform output models just before the dense classification layer. We expect to observe a correlation
between the performance of a model and its ability to keep the embeddings of a sample and its version
modified by the adversarial attack relatively close to each other.

5 Results and Discussion

To determine whether scale impacts adversarial robustness we examined different measures of
robustness for different models at scale. First, using our adversarial dataset, we measured the average
adversarial loss for all the different sizes of models Figure 3. The results show that in this narrow
range the adversarial loss behaves like a scale law. The scale law follows L = 2.134N (−.0579) where
N is the number of parameters.

Subsequently we analyzed the attack success rate on the trained model Figure 4 shows the average
success rate and Figure 5 shows the success rate on models trained on the individual models. The
attack success rate decreases as a function of model size but only very slightly. Meanwhile, for
the individual models, attack success rate is not a monotonically decreasing function of amount of
adversarial data the model was trained on. For all models, 100 adversarial data examples gave the
lowest loss. These results align with Figure 2 in [18]

Finally, we examine the L2 distance between the original text and the adversarial text in Figure 6.
The decreasing relationship between model size and L2 distance show that the models are not as
impacted by the adversarial examples. These results also align with Figure 3 [18], which demonstrate
that more robust models have smaller L2 distances.

All of these results are preliminary and more work has to be done to verify, we will try to outline some
of the strengths and weakness of the results. First, despite the fact that a scale law was calculated for
adversarial loss it was done in a very narrow band of model size. Many more models would have to
be trained at different sizes, larger and smaller to see if there are any phase transitions. Second, only
one size of data was used so it would be informative to examine how dataset size impacts adversarial
robustness as well. Additionally, looking at FLOPS and not just model size can give more information
on how scale impacts robustness. Furthermore, we only trained models on one dataset and it would
be imperative to extend these results to different datasets. Finally, we have only used an adversarial
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dataset as a measure of adversarial robustness but there are other measures of adversarial robustness
and exploring those would be beneficial.

In spite of these weaknesses, these results are still quite promising and do demonstrate that there is a
strong relationship with model size and adversarial robustness. Another strength of this paper is that
it’s results corroborate some results in [18].

Figure 3: Average loss on adversarial examples for different model sizes in log log scale. Each dot
represents an average of the losses for all models of the same size. Different models of the same size
were trained with different amounts of adversarial data introduced during training.

Figure 4: Average attack success rate of two different attacks, TextFooler [] and BAE []. The graph is
in log scale on the x axis.
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Figure 5: Attack success rate on different attacks, TextFooler [] and BAE [] for models trained on
different amounts of adversarial data.

Figure 6: L2 distance between the representation of the original text and the adversarial text. This
shows a monotonically decreasing relationship between L2 distance and model size.

6 Conclusion and Future Work

Our current results, albeit still preliminary, suggests indeed that scale improves adversarial robustness.
For the different sized of GPT models used like GPT-Neo 125M, GPT-Neo 1.3B, GPT-Neo 2.7B,
GPT-J 6B, the average adversarial loss obtained shows behavior like that of a scale law. The attack
success rate shows that the two word-level adversarial attacks follow a similar pattern and decrease
marginally as the model size (Number of parameters) increase. Furthermore, the L2 distance between
the adversarial and original example declines as the model size increases indicating that the L2
distances are less when the number of robust models increases. All of these give evidence that scale
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is important for adversarial robustness but more work has to be be done to solidify the evidence.
For future work it would be important to expand the experiments we have done. First, we should
expand the scale of our models, we have only looked at a narrow band of 125M-6B parameters
and we should look at both larger like the 20B and 175B models as well as much smaller models.
Second, we should look at training initial training of smaller datasets and see how dataset size affects
scale. Third, we should look at robustness as a measure of FLOPs. Subsequently, we should try and
find different adversarial robustness measures. Finally, we need to do our final training on multiple
different datasests like IMBD or Amazon Polarities. Once all of these experiments have been done
we will have a much clearer picture on how scale impacts adversarial robustness.
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