
1

Autonomous Drone Swarm Deployment
Sariah Al Saati, Mehdi Benharrats, Swann Chelly, Tom Marty, Pierre Tessier

Abstract—This paper proposes a method for the coverage of
a warzone with a swarm of UAV’s in order to detect possible
target of interest based on colaborative reinforcement learning.
This study has been carried out for the 2020 challenge hosted
by Ecole Polytechnique in partnership with the French General
Direction of Armement (DGA). The method proposed includes
field coverage and also target detection in a multi agent system.

INTRODUCTION

For this 2020/2021 edition of the DGA challenge, the goal
is to cover an area with a swarm of UAV’s and a group of
terrestrial robots in order to find individuals hiding in the
area. This study is being motivated by the need to help troops
to cover a battlefield or a rescue zone. In a battlefield, robots
are exposed to destruction by hostile troops, while in a rescue
operation, robots must civilians hidden under debris.

For such a goal, there are two main challenges that need
to be overcome. The first one is to handle the detection of
the individuals and the understanding of the environment.
To do so, image analysis for each robot is primordial. The
detection pipeline is divided in two steps, a processing
step and a post-processing step . The first step consists in
detecting points of interest such as humans, buildings or
vehicles in 2D images generated by on-board cameras. This
task is carried out by the well-known YOLO V5 algorithm
that is able to detect the presence of objects of interest,
along with their nature and their bounding boxes. Then, the
post-processing step consists in inferring the 3D position
of points of interest using clustering on directions of detection.

The second challenge that must be taken into account is the
idea that robots must collaborate with each other in order to
improve their understanding of the environment. Two kinds
of approach can be used here. On the one hand we can go
deep into the literature concerning deterministic algorithm
that manage coverage of a field by a swarm of robots [1].
On the other hand, the last years saw an important spread
of collaborative algorithms based on reinforcement learning.

However, such method requires an important computational
cost and the goal is to reduce it [10]. One way that was
interesting to go in is allowing UAVs to communicate in order
for them to exchange information. Creating a global reward
for such swarm and using a 2D map has been developed in
[9] and is the method we have chosen to develop for this
challenge.

In section I, we introduce the problem statement and the
way we tackle this project. In section II we describe the
detection part of the project. Section III is dedicated to the
behaviour of the swarm of robots and section IV to the
collaborative Q-learning algorithm we used. Finally section V
describes the results of our simulation and the improvement
that still needs to be done in order to have a complete work.

I. PROBLEM STATEMENT

Our goal for this 2020/2021 DGA’s challenge is to cover an
area in order to detect hidden people. To do so, DGA provided
us a simulation environment that integrate the ability to control
UAVs and terrestrial robots to make them discover a given area
to detect our targets. The swarm of UAVs is divided in two
types. Some are regular UAVs and the others are equipped with
infrared sensors. The goal of the UAVs is to find the human
targets in order to guide the terrestrial robots to these targets.
A target will be considered as detected when a terrestrial robot
is close enough to it. Since the application of such challenge
is the guidance of troops in a war-zone, UAVs might be killed
by hostile troops once they enter the battlefield.

A. Simulation Environment

We use Gazebo and ROS to simulate the physical behaviour
of both terrestrial and flying robots interacting with their envi-
ronment. The fleet is composed of 10 drones and 4 terrestrial
robots. The simulation environment is a suburban area, where
several people are located outside or inside the buildings.
Some of them are colored in green, they represent our targets.
The other people are considered as neutral civilians.

December 2020 DGA Challenge



2

Fig. 1. Hybrid control system for one agent as a member of the swarm, as
described in [9]. Information is thus parsed from continuous state to discrete
state in order to process discrete actions and act in a continuous space.

B. Structure of the project

1) System description: There are many ways to address
multi-agent reinforcement learning in a continuous space.
However most of the methods require an important
computation time due to the fact that with a large area
and a large swarm, the action space is too big. In fact, even
if terrestrial robots are moving in a 2D map, UAVs have the
ability to interact with a 3D environment. In order to reduce
the complexity of the algorithm, we decided to rely on a
γ-information map that have been introduced in [9]. The main
idea behind the use of the γ-information map is to work in
a discrete environment to deploy a collaborative multi-agent
Q-learning. Therefore we obtain the hybrid control system
depicted in Figure 1.

Each of one agent’s action will be chosen according to a
reinforcement learning algorithm and will be performed in
the continuous space, using a continuous motion model. To
perform such movement we used the MAS motion model
developed in [9] which uses both repulsive forces between
UAVs and a PID control. After performing such action, the
UAV will analyze the environment according to the image
analysis described in section II. Then a reward will be
computed according to the method described in [9] .

2) γ-information map: The γ-information map is a 2D grid
of the environment composed of cells. Each cell is represented
by a γ-agent, whose coordinates are the center of this cell.
Therefore, an action taken by a UAV in this discrete state
can be seen as a movement of this UAV from one γ-agent
position to another. Unlike [9], we assume that each robot can
communicate with the other robots. Therefore we define only a
global γ-information map that will be shared by all the robots.
Since we want to cover a predefined area, we have access to its
size n×m. In order to build such γ-information map, we have
decided to divide the simulation environment in rectangles of

size k×l chose centers are the previously mentioned γ-agents.
This means that all UAVs will be flying at a same height z.
Therefore according to the simulation environment, we have
rs = z tan(π4 ), where rs is the radius of the area covered by
the UAV at height z. Thus we have :{

k = d n√
2rs
e

l = d m√
2rs
e (1)

For each γ(x, y) coordinates of a γ-agent in the γ-information
map M , we define a visit score as follows : M(γ(x, y)) = 1
if the γ-agent cell has already been visited and 0 otherwise.

3) Covering strategy: The simulation environment is
designed to be as realistic as possible. That means that drones
can hit walls or curbs. To tackle this additional problem,
drones are equipped with embedded Lidar that allows them
obstacle detection. Drones are trained to mainly go up
an obstacle to avoid it. Thus, the γ-information map also
contain a height-information map, that is completed while the
environment is mapped. Using this trick, the drone will adjust
its height to always keep the same distance to the floor. This
allows us to reduce the dimension of the field of possible
movement by one, and convert our 3D environment to 2D map.

Once the environment is mapped and once we have found
our first target, terrestrial robots are sent on zone to confirm
detection. To avoid walls, their path to the detection zone is
computed using Dijkstra algorithm on the height-information
map. The model we developed and provided does not take
this improvment into account and it will be added in a next
version.

II. VISION AND GEOMETRY

In this section, we present the detection pipeline, which is
a process divided in two parts, the processing part and the
post-processing part. The processing phase aims at predicting
the presence of one or more objects and their local coordinates
using images given by the UAV’s camera. The post-processing
phase aims at determining the 3D positions of a set of points
of interest whose size is not known using the set of detections
from all the UAVs over the entire data acquisition period.

A. YOLO algorithm

Our main idea to enable entity detection through the video
streams of the drones was to use the YOLO v3 algorithm.
YOLO algorithms constitute a powerful algorithm family, with
impressive detection results, while keeping a relatively high
execution speed and needing reasonable computing resources.
The last versions of YOLO are widely used in autonomous
systems and thus it seemed a logical choice to us.

We successfully adapted the code of YOLO v3 to our needs
and obtained convincing results. However after a few tests,
we were forced to admit that it was not worth investigating
further. We were not able to use a proper GPU in parallel
of our simulation environment, and thus we had poor com-
puting performances on a CPU despite the efficient YOLO
architecture. Moreover, in our simulation environment, given

December 2020 DGA Challenge



3

Fig. 2. Pipeline of the 3d detection of points of interest.

that our targets were colored in green, we were able to detect
our main targets without using complex image processing, and
thus YOLO was useful only to detect secondary objects which
we considered not useful enough with our time constraints.

Fig. 3. Our moving drone -in black at the center of the simulation
environment- is capturing the position of its targets, the green men. In the
upper right corner is the mask obtained with the drone camera, on which we
apply DBSCAN clustering ton find all the targets

B. Position identification

Once the position of a target is found in an image, we
use the camera parameters to compute a ray starting from
the drone position and pointing towards the detected entity.
We then use the multiple frames captured by a single drone,
and thus the multiple rays pointing toward the same target,
to compute many points where rays are at the closest to each
other. Finally, we use a clustering algorithm on those identified
points to find all the observations related to the same target.
It then makes it possible to compute an accurate estimator of
the target position by averaging on all these observations.

Once we have done this work with each drone indepen-
dently, we gather these results for the whole swarm and we
once again use a simple clustering algorithm to filter targets
that were identified simultaneously by multiples drones.

Fig. 4. Based on the rays computed from the pictures, we generate point
clouds around our targets.

III. UAVS BEHAVIOUR

In this section, we present all the tools we implemented in
order for the UAV to be able to move in the environment.

A. UAVs description

In the environment, one UAV have several tools in order to
interact with the environment. These tools are mainly :
• a GPS
• an inertial measurement unit
• a sonar directed to the ground
• a lidar
• a 3 axis magnetometer
• an altimeter
• a front camera
• a camera which is facing the ground
These tools were the main tools used to implement the drone

navigation programs, which are described in the following
paragraphs.

B. Collision Detection

The first issue to address concerning drone navigation is
the ability for the drone to detect obstacles and to avoid them.
To do us, we mainly used the lidar with which each drone
is equipped. It is important to mention that each drone are
controlled so that it always faces the direction in which it
goes. Thus, using the lidar, the drone is able to detect all the
obstacles in front of him within an arbitrary angular range.
The data of the lidar is then processed to detect if the drone
can go around the obstacle by the sides, and it does so when
it is possible. When the drone cannot go around the obstacle
(typically when the drone is near a wall and does not see
where the wall ends), it automatically goes up until it reaches
the top of the obstacle and maintain a a fixed height relative
to this obstacle. This height is controlled with the sonar, with
which the drone is equipped. When the drone overcomes the
obstacle, it goes down until it reaches a fixed height relative to
the ground. During this maneuver, the position and the height
information of the obstacle is stored in the γ-information map
to allow the terrestrial robots to find their way to the potential
targets by avoiding these obstacles.

December 2020 DGA Challenge



4

C. Vision and Detection

Each drone is equipped with either a 240 ∗ 320 pixels
standard camera, or with an infrared camera, each facing in
the direction of movement. In order to provide relevant data
to the RL model, each drone must be able to detect at each
time step the presence of points of interests in the Image. This
is achieved thanks to the Yolo V5 pre-trained model. Yolo V5
provides the coordinates in pixels of the bounding box of the
detected object in the image 2D local basis.

D. Inverse Projection Transformation

Once we have all the local two-dimensional positions of the
points of interest detected for all time steps. It is necessary to
generate the three-dimensional coordinates of these points of
interest. For that, we calculate the three-dimensional ray of
detection knowing the position of the camera and the local
coordinates of detection of the point of interest in the 2D
image. A point P and an orientation vector v̄T =

[
X Y Z

]
are needed to define a 3D ray. One point P is given by the
position of the camera Pc . We calculate the orientation vector
with the help of the inverse projection matrix of our camera,
thanks to the following formula :

x̄ =

sxsy
1

 =

∗ ∗ ∗ ∗∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



X
Y
Z
1

 = ΠX

x and y are the two-dimensional coordinates in the image,
X , Y and Z are the world coordinates of the related orientation
vector. Π is the combination of a extrinsic transition matrix
and a intrinsic projection matrix, it is described as follow :

Π =

f 0 cx
0 αf cy
0 0 1

 [I3×3 03×1
]
R4×4 T4×4

Where :

R4×4 =

[
R3×3 03×1
01×3 0

]
(2) T4×4 =

[
I3×3 T3×1
01×3 0

]
(3)

The width of the image is noted wc = 320 pixels and the
height of the image is noted hc = 240 pixels. The horizontal
field of view is θc = π

2 .
K is the intrinsic matrix, describing the characteristics of

the camera : focal length f = wc

2 ∗arctan( θc2 ), principal point
(cx = wc

2 , cy = hc

2 ), pixel aspect size α = 1. R and T are
respectively the Translation matrix of the optical center in the
reference frame and the Rotation matrix of the image plane.

Thus it is possible to compute v̄ using the pseudo inverse
of Π : [

v̄
1

]
=


X
Y
Z
1

 = Π−1x̄ (4)

And finally we can define one 3D ray of detection :

D = {Pi, v̄} (5)

where Pi is the position of the Center of Projection of the
camera.

E. First clustering on 3D-ray of detection

In the coverage process, each agent i generates many
detection axes of points of interest :

Ωi =
{

(P i1, v
i
1), (P i2, v

i
2), ..., (P in, v

i
n)
}

(6)

We would like to infer the three-dimensional position of
these points of interest. To achieve that, a double clustering
is applied to this data to determine the likely number and
position of points of interest. First, we apply a local clustering
on all the ray generated by a single drone. This part aims at
inferring the number of detected points of interest by each
drone.

It is not common to perform clustering on 3D ray and
the result may even not be what we would expect. For
this reason, we generate a set of points (p1, p2, ..., pn2)
where each point is the mid point between every pair of ray(
(P ia, v

i
a), (P ib , v

i
b)
)
∈ Ω×Ω. In this way, we come back to a

classic case of point clustering, as presented in [5].

For this task, there exist several clustering solutions, one of
them is the well know K-means clustering. K-means works
well most of the time, but one of the difficulty that remains is
to define the number k of clusters (ie. of distinguishable points
of interest). Indeed, we do not know in advance how many
distinguishable points of interest had been detected by the
drone at a given instant of the operation. Thus, to do so, one
solution is to measure the average silhouette of our clustering.
The silhouette value, presented in [7] is a measure of how
similar an object is to its own cluster (cohesion) compared
to other clusters (separation). The average silhouette is
calculated using the Euclidean metric. The method to
chose the optimal - or most likely - value of k is described
in [7], and we choose to implement this method in this project.

In practice, we had some performance issues with this
method as it requires to compute several K-means clustering.
We finally decided to use a DBSCAN Clustering as explained
in [6], one of the most cited clustering algorithm in
bibliography. This algorithm is particularly useful to compute
a clustering without knowing a priori the number of effective
clusters in the data.

F. Second clustering on detected position

Once we computed all the detected position for each drone
independently, it is necessary to gather all the data, simply
because one distinguishable point of interest could have been
detected by two different drones and thus could be given two
times. Thus, we apply a second K-means clustering on the
detected position, using the same optimisation of k′ described
above [7]. The likely position of distinguishable point of
interest detected by the set of UAVs

(
P̂1, P̂2, ..., P̂k′

)
is given

December 2020 DGA Challenge



5

Fig. 5. Action space figure from [9]. a) No boundary, b) Upper Left corner,
c) Lower boundary

by the coordinates of centroid of each cluster. By the law of
large number limt→+∞

(
P̂1, P̂2, ..., P̂k′

)
= (P1, P2, ..., Pk′),

where t is this total acquisition time. This statistic method
ensure that the inferred positions are close from the true
positions.

IV. REINFORCEMENT LEARNING

Q-learning algorithm as presented in [4] aims to store in a
Q-learning table the best strategy to choose, given an available
action space A and a state S. In our case, the Q-learning table
will give the optimal γ-agent to which each UAVs must go.
We use the same nomenclature and Q-learning structure as in
[9] : the current state, action and reward of an agent i are
respectively si, ai, ri, and the next state and action according
to the choice taken are respectively s′i and a′i.

A. Multi-Agent Reinforcement Learning
1) State and Action space: In natural Q-learning scenario

with one agent, state si represents the agent’s coordinates.
However since we want the agent to communicate and
share information according to the update of the global γ-
information map, we must redefine the current state si as
follows :

si = [M,pγ1 , ..., p
γ
N ] (7)

where pγj is the position of agent j in the γ-information map
(therefore, the object pγj is the coordinates of a given γ-agent).

In our study, we define the action space according to the
neighborhood of each agent. From [9] we extract the following
nomenclature :

Ai = {1, 2, 3, 4, 5, 6, 7, 8, 9} (8)

that can be represented in Figure (5) with the boundary
cases.

2) Reward function: The reward system is the one being
used in [9] where we have for UAV i :

ri(ai, si) =



0 if M(γ′(x, y)) = 0
and ai ∈ {1, 2, 4, 6, 8}

−0.3 if M(γ′(x, y)) = 0
and ai ∈ {3, 5, 7, 9}

−0.2ecr(kr−1) if M(γ′(x, y)) 6= 0
R(T ) if M(γ(x, y)) 6= 0

∀γ(x, y)
(9)

In this formula, we define :

M(γ′(x, y)) =

{
0 if the cell γ′(x, y) had been visited
1 else

(10)
We also define :

R(T ) =

 0 if T > cT1 Tmin
rref
2 (1 + f(T )) if cT2 Tmin < T ≤ cT1 Tmin

rref if T ≤ cT1 Tmin
(11)

With :

f(T ) = cos(
π(T − cT2 Tmin))

(cT1 Tmin − cT2 Tmin)
) (12)

where cT1 > cT2 > 1 are constants. We have Tmin the
minimum traversal time of the area defined as follow :

Tmin = min{ (l − 1)mk

l|vmax|
+

(k − 1)n

k|vmax|
+

(k − 1)nl

k|vmax|
+

(l − 1)m

l|vmax|
}

(13)
The idea of such a reward system is to give negative rewards

when the drone moves to an already visited cell if not all cells
have been visited yet. If we visit all the cells in an enough
short amount of time, then visiting a cell that has already been
visited gives the UAV some rewards.

B. Collaborative Q-learning

The article [9] relies on the article [2] in order to do
collaborative reinforcement learning. The update of the Q-
value table of UAV i at iteration K is done as follows :

ξKi (si, ai) = QKi (si, ai)+α(rKi +λmax
a′i∈Ai

QKi (s′i, a
′
i)−QKi (si, ai))

(14)

QK+1
i (si, ai) = wξKi (si, ai) + (1− w)

N∑
j=1

ξKj (si, ai) (15)

where α is the learning rate, λ the discount factor and w ∈
[0, 1] the selfishness rate. If w → 0 then the UAV is considered
as selfish, while when w → 1 he collaborates with the other
UAVs.

The action space Ai of UAV i is being restricted to A′i, the
subset of Ai containing γ-agents that have not been visited
yet.

A′i = {γ(x, y) ∈ Ai|M(γ(x, y)) = 0} (16)

We have therefore two cases :
1) A′i 6= ∅, then UAV choose to reach a γ-agent that have

never been visited before according to the principle of
maximization of Q-value :

a′i = arg max
ai∈A′

i

Qi(si, ai) (17)

2) A′i = ∅, then UAV choose to reach the closest γ-agent
that maximises its reward :

a′i = arg max
γ(x,y)∈Ai

||rx1,y1 − γ(x, y)||2 (18)

December 2020 DGA Challenge



6

C. Q-Learning architecture

In order to increase the performance of our Q-Learning
we used two technologies related to this deep learning method.

a) Double Q-Learning: The first one is called Double
Q-Learning. It has been first proposed by [3] in order to
reduce the bias link to the maximisation issue. In fact, when
we consider equation 14 and especially its maximisation part
max
a′i∈Ai

QKi (s′i, a
′
i) we overestimate values at each operation

introducing a bias in our model. In order to reduce such bias,
we use two separate Q-value estimators, each of which is
used to update the other.

b) Dueling Q-Learning: As we have several drones
sharing information, we don’t necessarily need to know each
effect of each action for the environment. Therefore, we use
a trick called ”Dueling Q-Learning” that follows this idea. It
has been introduced in [8].

V. SIMULATION AND EVALUATION

In this section, we present the simulation process, and define
the evaluation metric for our algorithm. We also describe the
work that need to be done and the improvment that will be
important to do.

A. Simulation process

The simulation was divided in two parts : a training part
and the evaluation. We did not have the time to do both of
them but here are our results. During the training part, we
launch the simulation several times in order for the drones
to compute the Q table related to the gamma map. For the
evaluation part, we wanted to store this map over the time
and to compare the mean coverage at each iteration according
to the method described in [9]. This must be done in order to
improve our RL algorithm.

Our swarm of UAVs succeed in covering the field but
we didn’t had the time to do a very deep training process.
Our architecture for the neural network is simple and it will
be needed to improve it. Currently, the coverage takes a
long time but we are convinced according to our algorithm
that with a good training, we will be able to increase this
performance.

During this challenge we had many issues that really slowed
the project. One of them was the fact that we weren’t able
to display some information on the simulation environment
which makes more complicated to do a good training. Most of
the issues we faced were linked to the fact that we were given
an already complex ros gazebo project, and we got to work on
it without documentation, and without prior knowledge on how
to work on a ros gazebo project. Learning the skills needed to
handle such a project took us a lot of time (at least half of the
time spent on this project). We regret having to spend so much
time in a task that does not deserve the goal of this challenge,
which was to work on autonomous drone swarn deployment,

and not on how to move a drone. We cannot help thinking
that we could have saved a precious amount of time if we
were given a very simple documentation on the basics of ros
gazebo. Even now, we are convinced that we lack some useful
skills that would have allowed us to work on this project more
appropriately.

B. What must be done now ?

As this project was done as a participation in a challenge
we struggled to get all the work we wanted done. Therefore
some fixes must be implemented :

1) Improve our collision detection model.
2) We need to connect the huskies tasks to the drone

detection and implement the Djisktra algorithm.
3) We need to improve the logs concerning the detection

part. For example, we may use a threshold on the
variance of the position in order to give an accuracy limit
to our detection. Moreover, we need to find the optimal
parameters between the detection period and the speed
of the UAVs.

4) We can still improve the accuracy of our detection
model.

5) We didn’t tested the kill zone for our model but accord-
ing to [9], our model is strong concerning dead UAVs.

A last comment about our model is about its ability to adapt
to orders. For example, once you have trained your model to
cover a γ-information map, you can place UAVs wherever
you want in the map. Since all UAVs have a Q-table trained,
they can communicate with each other in order to find the
perfect coverage strategy. A last, but important improvement
will be to add a reward system that depends on time and on
the field strategy. For example, if in your field you have some
area of interest like buildings and whatever, you can positive
rewards for these places that depend on time. Then, the optimal
strategy for the swarm of UAVs will be a coverage where areas
of interest will be visited faster.

REFERENCES

[1] Pooyan Fazli et al. “Multi-Robot Area Coverage with
Limited Visibility”. In: (). DOI: 10 . 1145 / 1838206 .
1838451.

[2] R. Lim H. M. La and W. Sheng. “Multirobot coopera-
tive learning for predator avoidance”. In: ’IEEE Trans.
Control Syst. Technol. 23.1 (January 2015), pp. 55–63.

[3] Hado van Hasselt, Arthur Guez, and David Sil-
ver. “Deep Reinforcement Learning with Double Q-
Learning”. In: Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence (AAAI-16) ().

[4] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard
Neumann. Guided Deep Reinforcement Learning for
Swarm Systems. 2017. arXiv: 1709.06011 [cs.MA].

[5] Mahamed Omran, Andries Engelbrecht, and Ayed
Salman. “An overview of clustering methods”. In: Intell.
Data Anal. 11 (Nov. 2007), pp. 583–605. DOI: 10.3233/
IDA-2007-11602.

December 2020 DGA Challenge



7

[6] Anant Ram et al. “A Density Based Algorithm for
Discovering Density Varied Clusters in Large Spatial
Databases”. In: International Journal of Computer Ap-
plications 3 (June 2010). DOI: 10.5120/739-1038.

[7] Peter J. Rousseeuw. “Silhouettes: A graphical aid to
the interpretation and validation of cluster analysis”.
In: Journal of Computational and Applied Mathematics
20 (1987), pp. 53–65. ISSN: 0377-0427. DOI: https :
/ / doi . org / 10 . 1016 / 0377 - 0427(87 ) 90125 - 7. URL:
https : / / www. sciencedirect . com / science / article / pii /
0377042787901257.

[8] Ziyu Wang et al. “Dueling Network Architectures for
Deep Reinforcement Learning”. In: Google DeepMind,
London, UK ().

[9] JIAN XIAO et al. “A Distributed Multi-Agent Dynamic
Area Coverage Algorithm Based on Reinforcement
Learning”. In: IEEE Acess 8 (January 2020), pp. 33511–
33521. IEEEAccess: 2169-3536.

[10] Matthew Zhu et al. “Reinforcement Learning for Multi-
robot Field Coverage Based on Local Observation”. In:
IEEE (). DOI: 10.1109/SoSE50414.2020.9130535.

December 2020 DGA Challenge


